Análisis sobre el uso de las herramientas de inteligencia artificial interactiva en el entorno universitario

Autores/as

DOI:

https://doi.org/10.51302/tce.2025.22219

Palabras clave:

educación superior, innovación educativa, inteligencia artificial, rendimiento académico, sociedad de la información, tecnología de la información, universidad

Resumen

Las herramientas tecnológicas basadas en inteligencia artificial han sido un gran avance en cuanto a generación de conocimiento, pero también han supuesto dificultades para el sistema educativo. En este contexto, el presente estudio trata de determinar los factores que influyen en el uso de herramientas de inteligencia artificial interactivas por parte de estudiantes universitarios (hombres y mujeres), analizando su influencia en el rendimiento académico. Para ello, se ha diseñado un cuestionario ad hoc al que ha respondido una muestra de 306 estudiantes universitarios, realizándose análisis descriptivos, de fiabilidad y validez discriminante de las escalas y de regresión aparentemente no relacionada. Los resultados muestran que cuatro factores influyen en el uso de herramientas de inteligencia artificial interactivas (expectativas de rendimiento, motivación hedónica, valor del precio y hábito) y que el uso de dichas herramientas conlleva un peor rendimiento académico de los estudiantes. Ello podría deberse a una planificación pedagógica deficiente o al libre uso de estas herramientas realizado por los alumnos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Adrián Castro-López, Export manager en ArcelorMittal/Profesor asociado del Departamento de Administración de Empresas de la Universidad de Oviedo (Asturias, España)

En el ámbito científico, forma parte del equipo de la Cátedra Fundación Ramón Areces de Distribución Comercial. Entre sus líneas de investigación destacan la aplicación de metodologías de inteligencia artificial en la toma de decisiones multicriterio, la calidad de la educación superior, el abandono universitario, las relaciones entre empresas en canales de distribución, el marketing turístico, el marketing estratégico o la economía circular. Ha participado en proyectos de investigación nacionales y proyectos de transferencia con empresas. Asimismo, colabora frecuentemente con grupos de investigación internacionales y es editor y revisor de diferentes revistas de impacto.

Antonio Cervero, Profesor ayudante doctor del Departamento de Psicología de la Universidad de Oviedo (Asturias, España)

En el campo científico, forma parte del grupo ADIR (Aprendizaje Escolar, Dificultades y Rendimiento Académico), con el cual ha participado en diversas investigaciones y ha publicado múltiples artículos en revistas científicas de alto impacto, así como capítulos de libros y monografías de importantes editoriales, tanto nacionales como internacionales. Sus líneas de investigación principales están centradas en el abandono universitario y en las tecnologías de la información y la comunicación (TIC), si bien, ocasionalmente, trabaja e investiga en los campos de la psicología sanitaria y la salud mental. Asimismo, colabora frecuentemente con grupos de investigación internacionales y es revisor de diferentes publicaciones JCR.

Lucía Álvarez-Blanco, Profesora contratada doctora del Departamento de Ciencias de la Educación de la Universidad de Oviedo (Asturias, España)

Sus principales líneas de trabajo e investigación se asocian con la orientación educativa familiar, la parentalidad positiva, el fracaso y el abandono escolar, las competencias socioemocionales y el acoso escolar en educación secundaria. Ha estado adscrita como colaboradora en varios proyectos de investigación cuyos resultados ha difundido en diversas publicaciones científicas de reconocido prestigio nacional e internacional.

Citas

Alshammari, S. H. y Alshammari, M. H. (2024). Factors affecting the adoption and use of ChatGPT in higher education. International Journal of Information and Communication Technology Education, 20(1), 1-16. http://dx.doi.org/10.4018/IJICTE.339557

Altememy, H. A., Mohammed, B. A., Hsony, M. K., Hassan, A. Y., Mazhair, R., Dawood, I. I., Al Jouani, I. S., Zearah, S. A. y Sharif, H. R. (2023). The influence of the artificial intelligence capabilities of higher education institutions in Iraq on students' academic performance: the role of AI-based technology application as a mediator. Eurasian Journal of Educational, 124, 267-282.

An, X., Chai, C. S., Li, Y., Zhou, Y. y Yang, B. (2023). Modeling students' perceptions of artificial intelligence assisted language learning. Computer Assisted Language Learning, 1-22. https://doi.org/10.1080/09588221.2023.2246519

Anderson, J. C. y Gerbing, D. W. (1988). Structural equation modelling in practice: a review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423. https://doi.org/10.1037/0033-2909.103.3.411

Astigarraga, E. y Carrera Farran, X. (2018). Necesidades a futuro y situación actual de las competencias en educación superior en el contexto de España. Revista Digital de Investigación en Docencia Universitaria, 12(2), 35-58. https://doi.org/10.19083/ridu.2018.731

Baabdullah, A. M. (2018). Consumer adoption of mobile social network games (M-SNGs) in Saudi Arabia: the role of social influence, hedonic motivation and trust. Technology in Society, 53, 91-102. https://doi.org/10.1016/j.techsoc.2018.01.004

Bilquise, G., Ibrahim, S. y Salhieh, S. M. (2024). Investigating student acceptance of an academic advising chatbot in higher education institutions. Education and Information Technologies, 29, 6.357-6.382. https://doi.org/10.1007/s10639-023-12076-x

Boden, M. (2016). AI. It's Nature and Future. OUP Oxford.

Chatterjee, S. y Bhattacharjee, K. K. (2020). Adoption of artificial intelligence in higher education: a quantitative analysis using structural equation modelling. Education and Information Technologies, 25, 3.443-3.463. https://doi.org/10.1007/s10639-020-10159-7

Chen, H. L., Widaros, G. V. y Sutrisno, H. (2020). A ChatBot for learning Chinese: learning achievement and technology acceptance. Journal of Educational Computing Research, 58(6), 1.161-1.189. https://doi.org/10.1177/0735633120929622

Dahri, N. A., Yahaya, N., Al-Rahmi, W. M., Vighio, M. S., Alblehai, F., Soomro, R. B. y Shutaleva, A. (2024). Investigating AI-based academic support acceptance and its impact on students' performance in Malaysian and Pakistani higher education institutions. Education and Information Technologies. https://doi.org/10.1007/s10639-024-12599-x

Delcker, J., Heil, J., Ifenthaler, D., Seufert, S. y Spirgi, L. (2024). First-year students AI-competence as a predictor for intended and de facto use of AI-tools for supporting learning processes in higher education. International Journal of Educational Technology in Higher Education, 21, 1-13. https://doi.org/0.1186/s41239-024-00452-7

Deng, X. y Yu, Z. (2023). A meta-analysis and systematic review of the effect of chatbot technology use in sustainable education. Sustainability, 15(4), 1-19. https://doi.org/10.3390/su15042940

Fontes de Gracia, S., García Gallego, C., Garriga Trillo, A. J., Pérez-Llantada Rueda, M.ª C. y Sarriá Sánchez, E. (2005). Diseños de investigación en psicología. UNED.

Fornell, C. y Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: algebra and statistics. Journal of Marketing Research, 18(3), 382-388. https://doi.org/10.1177/002224378101800313

Foroughi, B., Senali, M. G., Iranmanesh, M., Khanfar, A., Ghobakhloo, M., Annamalai, N. y Naghmeh-Abbaspour, B. (2023). Determinants of intention to use ChatGPT for educational purposes: findings from PLS-SEM and fsQCA. International Journal of Human-Computer Interaction, 40(17), 4.501-4.520. https://doi.org/10.1080/10447318.2023.2226495

Gado, S., Kempen, R., Lingelbach, K. y Bipp, T. (2022). Artificial intelligence in psychology: how can we enable psychology students to accept and use artificial intelligence? Psychology Learning & Teaching, 21(1), 37-56. https://doi.org/10.1177/14757257211037149

Gao, Z., Chea, J.-H., Lim, X.-J. y Luo, X. (2024). Enhancing academic performance of business students using generative AI: an interactive-constructive-active-passive (ICAP) self-determination perspective. The International Journal of Management Education, 22(2). https://doi.org/10.1016/j.ijme.2024.100958

Guevara Alban, G. P., Verdesoto Arguello, A. E. y Castro Molina, N. E. (2020). Metodologías de investigación educativa (descriptivas, experimentales, participativas y de investigación-acción). Revista Científica Mundo de la Investigación y el Conocimiento, 4(3), 163-173.

Hair, J. F., Babin, B. J., Black, W. C. y Anderson, R. E. (2019). Multivariate Data Analysis (8.ª ed.). Cengage.

Han, S. H. y Liu, M. (2022). Developing an inclusive Q&A chatbot in massive open online courses. En M. M. Rodrigo, N. Matsuda, A. I. Cristea y V. Dimitrova (Eds.), Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners' and Doctoral Consortium. AIED 2022 (pp. 10-15). Cham. https://doi.org/10.1007/978-3-031-11647-6_2

Henseler, J., Ringle, C. M. y Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43, 115-135. https://doi.org/10.1007/s11747-014-0403-8

Horodyski, P. (2023). Recruiter's perception of artificial intelligence (AI)-based tools in recruitment. Computers in Human Behavior Reports, 10. https://doi.org/10.1016/j.chbr.2023.100298

Jovanovic, M. y Campbell, M. (2022). Generative artificial intelligence: trends and prospects. Computer, 55(19), 107-112. https://doi.org/10.1109/MC.2022.3192720

Lai, C.-L. (2021). Exploring university students' preferences for ai-assisted learning environment: a drawing analysis with activity theory framework. Educational Technology & Society, 24(4), 1-15. https://www.jstor.org/stabe/48629241

Li, L., Peng, W. y Rheu, M. (2023). Factors predicting intentions of adoption and continued use of artificial intelligence chatbots for mental health: examining the role of UTAUT Model, stigma, privacy concerns, and artificial intelligence hesitancy. Telemedicine and E-Health, 30(3), 722-730. https://doi.org/10.1089/tmj.2023.0313

Nawaz, S. S., Sanjeetha, M. B., Al Murshidi, G., Riyath, M. I., Yamin, F. B. y Mohamed, R. (2024). Acceptance of ChatGPT by undergraduates in Sri Lanka: a hybrid approach of SEM-ANN. Interactive Technology and Smart Education. https://doi.org/10.1108/ITSE-11-2023-0227

Ni, A. y Cheung, A. (2023). Understanding secondary students' continuance intention to adopt AI-powered intelligent tutoring system for English learning. Education and Information Technologies, 28(3), 3.191-3.216. https://doi.org/10.1007/s10639-022-11305-z

O'Dea, X. y O'Dea, M. (2023). Is artificial intelligence really the next big thing in learning and teaching in higher education? A conceptual paper. Journal of University Teaching and Learning Practice, 20(5). https://doi.org/10.53761/1.20.5.05

Pacheco-Mendoza, S., Guevara, C., Mayorga-Albán, A. y Fernández-Escobar, J. (2023). artificial intelligence in higher education: a predictive model for academic performance. Education Sciences, 13. https://doi.org/10.3390/educsci13100990

Peremans, K. y Van Aelst, S. (2018). Robust inference for seemingly unrelated regression models. Journal of Multivariate Analysis, 167, 212-224. https://doi.org/10.1016/j.jmva.2018.05.002

Pfeuffer, N., Baum, L., Stammer, W., Abdel-Karim, B. M., Schramowski, P., Bucher, A. M., Hügel, C., Rohde, G., Kersting, K. y Hinz, O. (2023). Explanatory interactive machine learning. Business & Information Systems Engineering, 65(6), 677-701. https://doi.org/10.1007/s12599-023-00806-x

Priyadarshini, I., Mohanty, P. R. y Cotton, C. (2021). Analyzing some elements of technological singularity using regression methods. Computers, Materials & Continua, 67(3), 3.229-3.247. https://doi.org/10.32604/cmc.2021.015250

Qu, J., Zhao, Y. y Xie, Y. (2022). Artificial intelligence leads the reform of education models. Systems Research and Behavioral Science, 39(3), 581-588. https://doi.org/10.1002/sres.2864

Rodríguez-Sabiote, C., Úbeda-Sánchez, Á. M., Olmedo-Moreno, E. M.ª y Álvarez-Rodríguez, J. (2022). Importancia de los indicadores metodológicos-analíticos en el nivel de concreción de los diseños de investigación de los artículos científicos en educación. Revista de Investigación Educativa, 40(2), 365-383. https://doi.org/10.6018/rie.441741

Romero-Rodríguez, J. M.ª, Ramírez-Montoya, M.ª S., Buenestado-Fernández, M. y Lara-Lara, F. (2023). Use of ChatGPT at university as a tool for complex thinking: students' perceived usefulness. Journal of New Approaches in Educational Research, 12(2), 323-339. https://doi.org/10.7821/naer.2023.7.1458

Rouhiainen, L. (2018). Artificial Intelligence: 101 Things You Must Know Today about Our Future. Createspace.

Sharma, S., Singh, G., Gaur, L. y Afaq, A. (2022). Exploring customer adoption of autonomous shopping systems. Telematics and Informatics, 73. https://doi.org/10.1016/j.tele.2022.101861

Sobaih, A. E. E., Elshaer, I. y Hasanein, A. M. (2024). Examining students' acceptance and use of ChatGPT in Saudi Arabian higher education. European Journal of Investigation in Health, Psychology and Education, 14(3), 709-721. https://doi.org/10.3390/ejihpe14030047

Strzelecki, A. (2024). Students' acceptance of ChatGPT in higher education: an extended unified theory of acceptance and use of technology. Innovative Higher Education, 49, 223-245. https://doi.org/10.1007/s10755-023-09686-1

Tamilmani, K., Rana, N. P., Wamba, S. F. y Dwivedi, R. (2021). The extended unified theory of acceptance and use of technology (UTAUT2): a systematic literature review and theory evaluation. International Journal of Information Management, 57. https://doi.org/10.1016/j.ijinfomgt.2020.102269

Teng, Z., Cai, Y., Gao, Y., Zhang, X. y Li, X. (2022). Factors affecting learners' adoption of an educational metaverse platform: an empirical study based on an extended UTAUT model. Mobile Information Systems, 2022(1). https://doi.org/10.1155/2022/5479215

Tian, W., Ge, J., Zhao, Y. y Zheng, X. (2024). AI chatbots in Chinese higher education: adoption, perception, and influence among graduate students-an integrated analysis utilizing UTAUT and ECM models. Frontiers of Psychology, 15, 1-16. https://doi.org/10.3389/fpsyg.2024.1268549

Tiwari, C. K., Bhat, M. A., Khan, S. T., Subramaniam, R. y Khan, M. A. I. (2023). What drives students toward ChatGPT? An investigation of the factors influencing adoption and usage of ChatGPT. Interactive Technology and Smart Education, 21(3). https://doi.org/10.1108/ITSE-04-2023-0061

Van Slyke, C., Johnson, R. D. y Sarabadani, J. (2023). Generative artificial intelligence in information systems education: challenges, consequences, and responses. Communications of the Association for Information Systems, 53, 1-21. https://doi.org/10.17705/1CAIS.05301

Venkatesh, V., Morris, M. G., Davis, G. B. y Davis, F. D. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540

Venkatesh, V., Thong, J. Y. L. y Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412

Venkatesh, V., Thong, J. Y. L. y Xu, X. (2016). Unified theory of acceptance and use of technology: a synthesis and the road ahead. Journal of the Association for Information Systems, 17(5), 328-376. https://doi.org/10.17705/1jais.00428

Wu, W., Zhang, B., Li, S. y Liu, H. (2022). Exploring factors of the willingness to accept AI-assisted learning environments: an empirical investigation based on the UTAUT Model and perceived risk theory. Frontiers in Psychology, 13, 1-10. https://doi.org/10.3389/fpsyg.2022.870777

Yu, H. y Guo, Y. (2023). Generative artificial intelligence empowers educational reform: current status, issues, and prospects. Frontiers in Education, 8, 1-10. https://doi.org/10.3389/feduc.2023.1183162

Zhang, S. A., Shan, C., Lee, J. S., Che, S. P. y Kim, J. H. (2023). Effect of chatbot-assisted language learning: a meta-analysis. Education and Information Technologies, 28, 15.223-15.243. https://doi.org/10.1007/s10639-023-11805-6

Zou, M. y Huang, L. (2023). To use or not to use? Understanding doctoral students' acceptance of ChatGPT in writing through technology acceptance model. Frontiers in Psychology, 14, 1-9. https://doi.org/10.3389/fpsyg.2023.1259531

Descargas

Publicado

10-01-2025

Cómo citar

Castro-López, A., Cervero, A., & Álvarez-Blanco, L. (2025). Análisis sobre el uso de las herramientas de inteligencia artificial interactiva en el entorno universitario. Revista Tecnología, Ciencia Y Educación, (30), 37–66. https://doi.org/10.51302/tce.2025.22219