Campus virtual, dinámicas sociales y rendimiento académico en educación superior
DOI:
https://doi.org/10.51302/tce.2025.21405Palabras clave:
estadísticas de aprendizaje, minería de datos, comportamiento del estudiante, evaluación, sociometría, ciencias sociales, tecnologías de la información y la comunicación (TIC)Resumen
Se explora la relación entre el uso del campus virtual a lo largo de un curso académico, el rendimiento observado en los estudiantes (hombre y mujeres) y sus dinámicas individuales y grupales. La investigación se aplica sobre 137 estudiantes en dos asignaturas de educación superior. La metodología para llevarla a cabo es cuantitativa (analíticas de aprendizaje [learning analytics], minería de datos [data mining] y sociometría) y toma como fuentes los metadatos de los campus virtuales (25.308 registros), las calificaciones parciales y totales y los sociogramas de aula. Los datos obtenidos han permitido detectar aspectos relevantes para cada una de las cuestiones abordadas, así como relaciones explícitas entre ellas, en términos de patrones de comportamiento, entre las que destaca la capacidad explicativa de los metadatos para medir la influencia de la sociometría en el rendimiento discente. Esto subraya la utilidad de las tecnologías de la información y la comunicación (TIC), especialmente los campus virtuales presentes en la práctica totalidad de las asignaturas que hoy día se imparten en el ámbito universitario, como instrumento docente y no solo como medio de comunicación. Las evidencias detectadas convergen con estudios realizados en otros ámbitos geográficos y a otras escalas, lo que subraya su pertinencia e invita a profundizar en su exploración académica.
Agencias de apoyo
La presente investigación es consecuencia de las líneas planteadas en el Proyecto de I+D+i de Excelencia EDU2013-41974-P, del Ministerio de Ciencia e Innovación de España, sobre el impacto de las tecnologías educativas, desarrollado por el Grupo de Tecnologías Educativas de la Universidad de Málaga (España).
Descargas
Citas
Agrawal, R. y Srikant, R. (1994). Fast algorithms for mining association rules in large databases. En J. B. Bocca, M. Jarke y C. Zaniolo (Eds.), 20th International Conference on Very Large Data Bases (pp. 478-499). Morgan Kaufmann Publisers.
Amare, M. Y. y Simonova, S. (2021). Learning analytics for higher education: proposal of big data ingestion architecture. SHS Web of Conferences, 92. https://doi.org/10.1051/shsconf/20219202002
Arruga i Valeri, A. (1992). Introducción al test sociométrico. Herder.
Baek, C. y Doleck, T. (2021). Educational data mining versus learning analytics: a review of publications from 2015 to 2019. Interactive Learning Environments, 31(6), 1-23. https://doi.org/10.1080/10494820.2021.1943689
Bezanilla, J. M. (2011). Sociometría: un método de investigación psicosocial. PEI Editorial.
Carreras Casanovas, A. (2021). El reto de los dispositivos móviles en las aulas universitarias: una respuesta actual al trabajo autónomo y a la evaluación virtual. Tecnología, Ciencia y Educación, 19, 7-52. https://doi.org/10.51302/tce.2021.624
Cha Chi, G. I., Rodríguez Pech, J. y Zaldívar Acosta, M. (2024). La tutoría virtual en la formación de profesionales de la educación durante la pandemia. Tecnología, Ciencia y Educación, 28, 89-114. https://doi.org/10.51302/tce.2024.19293
Chaparro-Peláez, J., Iglesias-Pradas, S. y Pascual-Miguel, F. (2010). Uso del registro de actividad de Moodle para un estudio del rendimiento académico de alumnos en entornos en línea y presencial. 4th International Conference on Industrial Engineering and Industrial Management. XIV Congreso de Ingeniería de Organización (pp. 753-760). Donostia, San Sebastián, 8-10 de septiembre de 2010. https://bit.ly/3z2PZa0
Cuervo Montoya, B. M.ª, Valencia Posada, K. J., Calvo Betancur, V. D. y Torres Valois, T. (2023). Análisis de las percepciones del profesorado sobre la implementación de la e-evaluación en la universidad: resultado de la formación docente. Tecnología, Ciencia y Educación, 26, 37-64. https://doi.org/10.51302/tce.2023.18723
Du, X., Zhang, M., Shelton, B. E. y Hung, J.-L. (2022). Learning anytime, anywhere: a spatio-temporal analysis for online learning. Interactive Learning Environments, 30(1), 34-48. https://doi.org/10.1080/10494820.2019.1633546
Frank, E., A., Hall, M. A. y Witten, I. H. (2016). The WEKA Workbench. Online Appendix for «Data Mining: Practical Machine Learning Tools and Techquines». Morgan Kaufmann.
Frank, E., Hall, M. y Pfahringer, B. (2003). Locally weighted naive bayes. 19th Conference on Uncertainty in Artificial Intelligence (pp. 249-256). https://arxiv.org/abs/1212.2487
García-Peñalvo, F. J. (2021). Digital transformation in the universities: implications of the COVID-19 pandemic. Education in the Knowledge Society, 22, 1-6. https://doi.org/10.14201/eks.25465
Gourlay, L. (2021). There is no «virtual learning»: the materiality of digital education. Journal of New Approaches in Educational Research, 10(1), 57-66.
Gupta, P. y Yadav, S. (2022). A TAM-based study on the ICT usage by the academicians in higher educational institutions of Delhi NCR. En M. Saraswat, H. Sharma, K. Balachandran, J. H. Kim y J. C. Bansal (Eds.), Congress on Intelligent Systems. Lecture Notes on Data Engineering and Communications Technologies (Vol. 111, pp. 329-353). Springer. https://doi.org/10.1007/978-981-16-9113-3_25
Guzmán-Delgado, S. y Pico-Valencia, P. (2024). Marco de trabajo para transformar una universidad tradicional en inteligente desde una perspectiva de aseguramiento de la calidad. Tecnología, Ciencia y Educación, 27, 43-90. https://doi.org/10.51302/tce.2024.9103
Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis y Machine Intelligence, 20(8), 832-844. https://doi.org/10.1109/34.709601
Izquierdo Yusta, A., Jiménez Zarco, A. I., González González, I. y Martínez Ruiz, M.ª P. (2018). Determinantes de la experiencia de cliente en e-servicios: el caso de las universidades virtuales. Tecnología, Ciencia y Educación, 9, 11-33. https://doi.org/10.51302/tce.2018.172
Licklider, J. C. R. (1960). Man-Computer Symbiosis. IRE Transactions on Human Factors in Electronics (Vol. HFE-1, pp. 4-11). https://bit.ly/3ATdi8C
Martínez Romera, D. D. y Aguilar Cuesta, Á. I. (2021). Campus virtual y prácticum: una relación productiva para el Máster de Profesorado de Ciencias Sociales. En F. D. Guillén-Gámez, M. Gómez-García, T. Linde-Valenzuela y E. Sánchez-Vega (Coords.), Procesos de enseñanza-aprendizaje innovadores mediados por tecnología (pp. 213-222). Octaedro.
Mendoza-Silva, A. (2021). Innovation capability: a sociometric approach. Social Networks, 64, 72-82. https://doi.org/10.1016/j.socnet.2020.08.004
Namoun, A. y Alshanqiti, A. (2021). Predicting student performance using data mining and learning analytics techniques: a systematic literature review. Applied Sciences, 11(1), 1-28. https://doi.org/10.3390/app11010237
Nicolás-Robles, M.ª J. y Belmonte-Almagro, M.ª L. (2023). Evaluación de las actitudes ante el uso de las TIC en el profesorado universitario. Tecnología, Ciencia y Educación, 25, 29-52. https://doi.org/10.51302/tce.2023.1424
Rivadeneira Pacheco, J. L., Barrera Argüello, M. V. y Hoz Suárez, A. I. de la. (2020). Análisis general del SPSS y su utilidad en la estadística. E-IDEA Journal of Business Sciences, 2(4), 17-25.
Salas-Pilco, S. Z., Yang, Y. y Zhang, Z. (2022). Student engagement in online learning in Latin American higher education during the COVID-19 pandemic: a systematic review. British Journal of Educational Technology, 53(3), 593-619. https://doi.org/10.1111/bjet.13190
Saorín Miralles, S. y Saorín Pérez, T. (2023). Traducción del artículo «Metadata» de la Encyclopedia of Knowledge Organization. Anales de Documentación, 26, 1-20. https://doi.org/10.6018/analesdoc.556681
Scheffer, T. (2001). Finding association rules that trade support optimally against confidence. 5th European Conference on Principles of Data Mining y Knowledge Discovery (pp. 424-435).
Setoh, P., Zhao, S., Santos, R., Heyman, G. D. y Lee, K. (2020). Parenting by lying in childhood is associated with negative developmental outcomes in adulthood. Journal of Experimental Child Psychology, 189. https://doi.org/10.1016/j.jecp.2019.104680
Tibingana-Ahimbisibwe, B., Willis, S., Catherall, S., Butler, F. y Harrison, R. (2022). A systematic review of peer-assisted learning in fully online higher education distance learning programmes. Open Learning: The Journal of Open, Distance and e-Learning, 37(3), 251-272. https://doi.org/10.1080/02680513.2020.1758651
Yunita, A., Santoso, H. B. y Hasibuan, Z. A. (2021). Research review on big data usage for learning analytics y educational data mining: a way forward to develop an intelligent automation system. Journal of Physics: Conference Series, 1.898(1), 1-14. https://doi.org/10.1088/1742-6596/1898/1/012044
Zhang, L., Allen Carter Jr., R. Qian, X., Yang, S., Rujimora, J. y Wen, S. (2022). Academia’s responses to crisis: a bibliometric analysis of literature on online learning in higher education during COVID-19. British Journal of Educational Technology, 53(3), 620-646. https://doi.org/10.1111/bjet.13191
Zheng, F., Khan, N. A. y Hussain, S. (2020). The COVID 19 pandemic y digital higher education: Exploring the impact of proactive personality on social capital through internet self-efficacy y online interaction quality. Children and Youth Services Review, 119. https://doi.org/10.1016/j.childyouth.2020.105694
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Daniel David Martínez Romera, Sara Cortés Dumont
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.