Impact of an exergame-based didactic intervention on supplementary motor area activation during motor coordination in primary school students: a pilot study

Authors

  • Juan Carlos Bustamante Profesor contratado doctor de la Facultad de Educación de la Universidad de Zaragoza (ESpaña)
  • Alejandro Quintas Hijós Profesor contratado interino de la Facultad de Ciencias Humanas y de la Educación de la Universidad de Zaragoza (España)
  • Manuel Segura Berges Estudiante del programa de doctorado en Educación de la Facultad de Educación de la Universidad de Zaragoza y maestro del Colegio Compañía de María de Zaragoza (España)
  • Carlos Peñarrubia Lozano Profesor ayudante doctor de la Facultad de Educación de la Universidad de Zaragoza (España)
  • José Luis Antoñanzas Laborda Profesor contratado doctor de la Facultad de Educación de la Universidad de Zaragoza (España)

DOI:

https://doi.org/10.51302/tce.2020.487

Keywords:

exergame, primary school, supplementary motor area (SMA), functional near-infrared spectroscopy (fNIRS), neuroeducation

Abstract

Our study investigated the effect of an exergaming didactic intervention in Physical Education (PE) on brain functioning associated with motor coordination. Five students formed the control group (received traditional didactic intervention) and four made up the experimental group (received exergaming didactic intervention). Functional near-infrared spectroscopy (fNIRS) measures were acquired at two time points (before and after intervention) by a 64-channel NIRScout system covering the supplementary motor area (SMA) while performing a bimanual digital flexion-extension coordination task. The results showed a more efficient activity pattern for the group that performed the gamified exergaming intervention than for the control group (traditional didactic intervention). In conclusion, our study reports neurofunctional evidence for effects of exergames on motor coordination.

Downloads

Download data is not yet available.

References

Allsop, S., Rumbold, P. L. S., Debuse, D. and Dodd-Reynolds, C. (2013). Real life active gaming practices of 7-11-year-old children. Games for Health Journal, 2(6), 347-353. doi: https://doi.org/10.1089/g4h.2013.0050.

Beltrán-Carrillo, V. J., Beltrán-Carrillo, J. I., González-Cutre, D., Biddle, S. J. H. and Montero-Carretero, C. (2015). Are active video games associated with less screen media or conventional physical activity? Games and Culture, 11(6), 608-624. doi: https://doi.org/10.1177/1555412015574941.

Bland, J. M. and Altman, D. G. (1995). Multiple significance tests: the Bonferroni method. British Medical Journal, 310, 170. doi: https://doi.org/10.1136/bmj.310.6973.170.

Bo, J., Peltier, S. J., Noll, D. C. and Seidler, R. D. (2011). Symbolic representations in motor sequence learning. Neuroimage, 54(1), 417426. doi: https://doi.org/10.1016/j.neuroimage.2010.08.019.

Cadena-Valencia, J., García-Garibay, O., Merchant, H., Jazayeri, M. And Lafuente, V. de. (2018). Entrainment and maintenance of an internal metronome in supplementary motor area. eLife, 7, e38983. doi: https://doi.org/10.7554/eLife.38983.

Cordero, A., Cruz, M. V. de la, González, M. and Seisdedos, N. (2009). Factor G. Escalas 2 y 3 (Culture Fair Intelligence Tests Spanish Adaptation). Madrid, Spain: TEA Ediciones.

Daniel, D. B. (2012). Promising principles: translating the science of learning to educational practice. Journal of Applied Research in Memory and Cognition, 1(4), 251-253. doi: https://doi.org/10.1016/j.jarmac.2012.10.004.

Daza, J. (2007). Evaluación clínico-funcional del movimiento corporal humano (Clinical-Functional Evaluation of Human Body Movement). Bogotá, Colombia: Editorial Médica Panamericana.

Delpy, D. T., Cope, M., Zee, P. van der, Arridge, S., Wray, S. and Wyatt, J. (1988). Estimation of optical pathlength through tissue from direct time of flight measurement. Physics in Medicine and Biology, 33, 1.433-1.442. doi: https://doi.org/10.1088/0031-9155/33/12/008.

Duque, J., Lew, D., Mazzocchio, R., Olivier, E. and Ivry, R. B. (2010). Evidence for two concurrent inhibitory mechanisms during response preparation. The Journal of Neuroscience, 30, 3.793-3.802. doi: https://doi.org/10.1523/JNEUROSCI.5722-09.2010.

Gaal, S. van, Scholte, H. S., Lamme, V. A., Fahrenfort, J. J. and Ridderinkhof K .R. (2011). Pre-SMA graymatter density predicts individual differences in action selection in the face of conscious and unconscious response conflict. Journal of Cognitive Neuroscience, 23(2), 382-390.

Gao, Z., Lee, J. E., Pope, Z. and Zhang, D. (2016). Effect of active videogames on underserved children’s classroom behaviors, effortand fitness. Games for Health Journal, 5(5), 318-324. doi: https://doi.org/10.1089/g4h.2016.0049.

Gee, J. P. (2003). What Video Games Have to Teach Us About Learning and Literacy. England, United Kingdom: Palgrave Macmillan.

Gioftsidou, A., Vernadakis, N., Malliou, P., Batzios, S., Sofokleous, P., Antoniou, P., Kouli, O.,… and Godolias, G. (2013). Typical balance exercises or exergames for balance improvement? Journal of Back and Musculoskeletal Rehabilitation, 26(3), 299-305. doi: https://doi.org/10.3233/BMR-130384.

Gobel, E. W., Parrish, T. B. and Reber, P. J. (2011). Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task. Neuroimage, 58(4), 1.150-1.157. doi: https://doi.org/10.1016/j.neuroimage.2011.06.090.

Goble, D. J., Coxon, J. P., Impe, A. van, Vos, J. de, Wenderoth, N. and Swinnen, S. P. (2010). The neural control of bimanual movements in the elderly: brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment. Human Brain Mapping, 31, 1.281-1.295. doi: https://doi.org/10.1002/hbm.20943.

González, C. and Navarro, V. (2015). A structural theoretical framework based on motor play to categorize and analyze active video games. Games and Culture, 11(7-8), 690-719. doi: https://doi.org/10.1177/1555412015576613.

Goswami, U. (2006) Neuroscience and education: from research to practice. Nature Reviews Neuroscience, 7(5), 406-413. doi: https://doi.org/10.1038/nrn1907.

Grahn, J. A. and Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19, 893-906. doi: https://doi.org/10.1162/jocn.2007.19.5.893.

Hatfield, B. D. and Hillman, C. H. (2001). The psychophysiology of sport: a mechanistic understanding of the psychology of superior performance. In R. N. Singer, H. A. Hausenblas and C. M. Janelle (Eds.), Handbook of Sport Psychology (pp. 362-386). New York, USA: John Wiley.

Hatfield, B. D., Haufler, A. J., Hung, T. M. and Spalding, T. W. (2004). Electroencephalographic studies of skilled psychomotor performance. Journal of Clinical Neurophysiology, 21(3), 144-156.

Hertrich, I., Dietrich, S. and Ackermann, H. (2016). The role of the supplementary motor area for speech and language processing. Neuroscience and Biobehavioral Review, 68, 602-610. doi: https://doi.org/10.1016/j.neubiorev.2016.06.030.

Howard-Jones, P. (2007). Neuroscience and Education: Issues and Opportunities. London, Englad, United Kingdom: Teaching and Learning Research Programme (TLRP) University of London.

Howard-Jones, P., Holmes, W., Demetriou, S., Jones, C., Tanimoto, E., Morgan, O., … and Davies, N. (2015). Neuroeducational research in the design and use of a learning technology. Learning, Media and Technology, 40(2), 227-246. doi: https://doi.org/10.1080/17439884.2014.943237.

Hsu, J. K., Thibodeau, R., Wong, S. J., Zukiwsky, D., Cecile, S. and Walton, D. M. (2011). A «Wii» bit of fun: The effects of adding Nintendo Wii® Bowling to a standard exercise regimen for residents of long-term care with upper extremity dysfunction. Physiotherapy Theory and Practice, 27(3), 185-193.

Jantzen, K. J., Steinberg, F. L. and Kelso, J. S. (2009). Coordination dynamics of large-scale neural circuitry underlying rhythmic sensorimotor behavior. Journal of Cognitive Neuroscience, 21(12), 2.420-2.433. doi: https://doi.org/10.1162/jocn.2008.21182.

Kelso, J. A. S. (1995). Dynamic Patterns: The Self-Organization of Brain and Behaviour. Cambridge, United Kingdom: the MIT Press.

Kelso, J. A. S. and Zanone, P. G. (2002). Coordination dynamics of learning and transfer across different effector systems. Journal of Experimental Psychology. Human Perception and Performance, 28, 776-797. doi: https://doi.org/10.1037/0096-1523.28.4.776.

Kelso, J. A. S., Scholz, J. P. and Schoner, G. (1986). Non-equilibrium phase transitions in coordinated biological motion: critical fluctuations. Physics Letters A, 118, 279-284. doi: https://doi.org/10.1016/0375-9601(86)90359-2.

Larraz, A. (2012). La expresión corporal en la escuela primaria: experiencias desde la Educación Física (The body expression in primary school: experiences from physical education). In G. Sánchez and J. Coterón (Eds.), La expresión corporal en la enseñanza universitaria (pp. 179-188). Salamanca, Spain: Ediciones Universidad de Salamanca.

Li, B. J. and Lwin, M. O. (2016). Player see, player do: testing an exergame motivation model based on the influence of the self avatar. Computers in Human Behavior, 59, 350357. doi: https://doi.org/10.1016/j.chb.2016.02.034.

Lin, J. H. (2015). «Just Dance»: the effects of exergame feedback and controller use on physical activity and psychological outcomes. Games for Health Journal, 4(3), 183-189. doi: https://doi.org/10.1089/g4h.2014.0092.

Manzano, Ö. de and Ullén, F. (2012). Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms. Neuroimage, 63, 272-280. doi: https://doi.org/10.1016/j.neuroimage.2012.06.024.

Miura, A., Kudo, K. and Nakazawa, K. (2013). Action-perception coordination dynamics of whole-body rhythmic movement instance: a comparison study of street dancers and nondancers. Neuroscience Letters, 544, 157-162. doi: https://doi.org/10.1016/j.neulet.2013.04.005.

Miura, A., Fujii, S., Okano, M., Kudo, K. and Nakazawa, K. (2016). Finger-to-beat coordination skill of non-dancers, street dancers, and the world champion of a stret-dance competition. Frontiers in Psychology, 7, article 542, 1-10. doi: https://doi.org/10.3389/fpsyg.2016.00542.

Nachev, P., Kennard, C. and Husain, M. (2008). Functional role of the supplementary and presupplementary motor areas. Nature Review Neuroscience, 9, 856-869. doi: https://doi.org/10.1038/nrn2478.

Nguyen, H. V., Huang, H. C., Wong, M. K., Lu, J., Huang, W. F. and Teng, C. I. (2016). Double-edged sword: the effect of exergaming on other forms of exercise; a randomized controlled trial using the self-categorization theory. Computers in Human Behavior, 62, 590-593. doi: https://doi.org/10.1016/j.chb.2016.04.030.

Nyberg, G. and Meckbach, J. (2017). Exergames «as a teacher» of movement education: exploring knowing in moving when playing dance games in physical education. Physical Education and Sport Pedagogy, 22(1), 1-14. doi: https://doi.org/10.1080/17408989.2015.1112778.

Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97-113.

Olshansky, M. P., Bar, R. J., Fogarty, M. and DeSouza, J. F. X. (2015). Supplementary motor area and primary auditory cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music. Neurocase, 21(5), 607-617. doi: https://doi.org/10.1080/13554794.2014.960428.

Peng, W., Crouse, J. C. and Lin, J. (2013). Using active video games for physical activity promotion: a systematic review of the current state of research. Health Education and Behavior, 40(2), 171-192. doi: https://doi.org/10.1177/1090198112444956.

Quintas, A. (2019). Análisis del potencial didáctico de los exergames: reconceptualización y enfoque pedagógico. Scholè. Rivista di Educazione e Studi Culturali, 3(1), 97-116.

Reithler, J., Mier, H. I. van and Goebel, R. (2010). Continuous motor sequence learning: cortical efficiency gains accompanied by striatal functional reorganization. Neuroimage, 52(1), 263-276. doi: https://doi.org/10.1016/j.neuroimage.2010.03.073.

Ross, J. S., Tkach, J., Ruggieri, P. M., Lieber, M. and Lapresto, E. (2003). The Mind's eye: functional MR imaging evaluation of golf motor imagery. American Journal of Neuroradiology, 24, 1.036-1.044.

Ryan, K., Schranz, A. L., Dugal, N. and Bartha, R. (2019). Differential effects of transcranial direct current stimulation on antiphase and inphase motor tasks: a pilot study. Behavioural Brain Research, 366, 13-18. doi: https://doi.org/10.1016/j.bbr.2019.03.014.

Salem, Y., Gropack, S. J., Coffin, D. and Godwin, E. M. (2012). Effectiveness of a low-cost virtual reality system for children with developmental delay: a preliminary randomised single-blind controlled trial. Physiotherapy, 98(3), 189-195. doi: https://doi.org/10.1016/j.physio.2012.06.003.

Sarfeld, A. S., Diekhoff, S., Wang, L. E., Liuzzi, G., Uludag, K., Eickhoff, S. B., Fink, G. R. and Grefkes, C. (2012). Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area. Human Brain Mapping, 33(5), 1107-1123. doi: https://doi.org/10.1002/hbm.21272.

Sheehan, D. and Katz, L. (2010). Using interactive fitness and exergames to develop physical literacy. Physical and Health Education Journal, 76(1), 12-19.

Smethurst, C. F. and Carson, R. G. (2001). The acquisition of movement skills: practice enhances the dynamic stability of bimanual coordination. Human Movement Science, 20, 499-529.

Tanaka, K., Parker, J., Baradoy, G., Sheehan, D., Holash, J. R. and Katz, L. (2012). A comparison of exergaming interfaces for use in rehabilitation programs and research. The Journal of the Canadian Game Studies Association, 6(9), 69-81.

Thin, A. G., Brown, C. and Meenan, P. (2013). User experiences while playing dance-based exergames and the influence of different body motion sensing technologies. International Journal of Computer Games Technology, article ID603604, 1-7. doi: https://doi.org/10.1155/2013/603604.

Tore, P. A. di and Gaetano, R. (2012). Exergamedesign and motor activities teaching: an overview of scientific paradigms on motor control. Mediterranean Journal of Social Sciences, 3(11), 119-122.

Tore, P. A. di and Raiola, G. (2012). Exergames e didattica delle attività motorie e sportive. European Journal of Sustainable Development, 1(2), 221-228.

Vernadakis, N., Papastergiou, M., Zetou, E. and Panagiotis, A. (2015). The impact of an exergame-based intervention on children's fundamental motor skills. Computers and Education, 83, 90-102. doi: https://doi.org/10.1016/j.compedu.2015.01.001.

Vernadakis, N., Gioftsidou, A., Panagiotis, A., Ioannidis, D. and Giannousi, M. (2012). The impact of Nintendo Wii to physical education students' balance compared to the traditional approaches. Computers and Education, 59(2), 196-205. doi: https://doi.org/10.1016/j.compedu.2012.01.003.

Welniarz, Q., Gallea, C., Lamy, J.-C., Méneret, A., Popa, T., Valabregue, R., Béranger, B.,… and Roze, E. (2019). The supplementary motor area modulates interhemispheric interactions during movement preparation. Human Brain Mapping, 40(7), 2.125-2.142. doi: https://doi.org/10.1002/hbm.24512.

Wilson, T. W., Kurz, M. J. and Arpin, D. J. (2014). Functional specialization within the supplementary motor area: a fNIRS study of bimanual coordination. Neuroimage, 85(1), 445-450. doi: https://doi.org/10.1016/j.neuroimage.2013.04.112.

Yen, C., Lin, K., Hu, M., Wu, R., Lu, T. and Lin, C. (2011). Effects of virtual reality-augmented balance training on sensory organization and attentional demand for postural control in people with Parkinson disease: a randomized controlled trial. Physical Therapy, 91, 862-874. doi: https://doi.org/10.2522/ptj.20100050.

Zanone, P. G., Monno, A., Temprado, J. J. and Laurent, M. (2001). Shared dynamics of attentional cost and pattern stability. Human Movement Science, 20, 765-789.

Published

2020-09-02

How to Cite

Bustamante, J. C., Quintas Hijós, A., Segura Berges, M., Peñarrubia Lozano, C., & Antoñanzas Laborda, J. L. (2020). Impact of an exergame-based didactic intervention on supplementary motor area activation during motor coordination in primary school students: a pilot study. Technology, Science and Education Journal, (17), 79–96. https://doi.org/10.51302/tce.2020.487