Bio-inorganic electricity generators. Conversion of renewable chemical energy driven by enzyme-functionalized piezoelectric materials

Authors

  • Susana Velasco Lozano Investigadora posdoctoral del Instituto de Síntesis Química y Catálisis Homogénea de la Universidad de Zaragoza-CSIC (España)
  • Fernando López Gallego Investigador asociado del Instituto de Síntesis Química y Catálisis Homogénea de la Universidad de Zaragoza-CSIC e investigador de la Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), (España)

DOI:

https://doi.org/10.51302/tce.2020.373

Keywords:

enzymes, bio-catalysis, energy, piezoelectricity, renewable fuels

Abstract

In this project we have developed a new generation of bio-inorganic generators aimed at the electri­city production from renewable fuels. These systems are presented as an alternative to electroche­mical fueled cells. In this context, we have fabricated a new hybrid system, which fuses a biological machinery able to transform chemical energy into mechanical energy (pressure and vibration), with a piezoelectric material who convert such mechanical energy into electricity (bio-inorganic generator). The mechanical stimuli, as pressure and vibration, are generated as an outcome of the produced gases coming from renewable fuels; this reaction is catalyzed by the biological machinery (enzymes) which are part of the generator. These devices are able to produce electricity at the microscopic scale starting from renewable fuels as sugars and alcohols coming from the biomass. This fact is very significant allowing the indirect production of electricity with zero emissions. Moreover, these bio-inorganic generators open a passionate spectrum of new applications in different fields like sensing, robotics and energetics.

Downloads

Download data is not yet available.

References

Arqué, X., Romero-Rivera, A., Feixas, F., Patiño, T., Osuna, S. y Sánchez, S. (2019). Intrinsic enzymatic properties modulate the self-propulsion of micromotors. Nature Communications, 10(1).

Briscoe, J., Jalali, N., Woolliams, P., Stewart, M., Weaver, P. M., Cain, M. y Dunn, S. (2013). Measurement techniques for piezoelectric nanogenerators. Energy & Environmental Science, 6, 3.035-3.045.

Campos-Martín, J. M., Blanco-Brieva, G. y Fierro, J. L. G. (2006). Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angewandte Chemie International Edition, 45, 6.962-6.984.

Fan, F.-R., Tian, Z.-Q. y Lin Wang, Z. (2012). Flexible triboelectric generator. Nano Energy, 1(2), 328-334.

Fu, Y. Q., Luo, J. K., Nguyen, N. T., Walton, A. J., Flewitt, A. J., Zu, X. T., … y Milne, W. I. (2017). Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Progress in Materials Science, 89, 31-91.

Gao, W. y Wang, J. (2014). The environmental impact of micro/nanomachines: a review. ACS Nano, 8(4), 3.170-3.180.

Kirubakaran, A., Jain, S. y Nema, R. K. (2009). A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews, 13(9), 2.430-2.440.

Krozer, Y. (2013). Cost and benefit of renewable energy in the European Union. Renewable Energy, 50, 68-73.

Luckarift, H. R., Atanassov, P. B. y Johnson, G. R. (2014). Enzymatic uel Cells: From Fundamentals to Applications. Wiley.

Ma, X. y Sánchez, S. (2017). Bio-catalytic mesoporous Janus nano-motors powered by catalase enzyme. Tetrahedron, 73(33), 4.883-4.886.

Orozco, J., García-Gradilla, V., D’Agostino, M., Gao, W., Cortés, A. y Wang, J. (2013). Artificial enzyme-powered microfish for water-quality testing. ACS Nano, 7(1), 818-824.

Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C. y Milligan, R. A. (1993). Structure of the actin-myosin complex and its implications for muscle contraction. Science, 261(5.117), 58-65.

Reinišová, L., Hermanová, S. y Pumera, M. (2019). Micro/nanomachines: what is needed for them to become a real force in cancer therapy? Nanoscale, 11, 6.519-6.532.

Wang, X. (2012). Piezoelectric nanogenerators-Çharvesting ambient mechanical energy at the nanometer scale. Nano Energy, 1(1), 13-24.

Wang, Z. L. y Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5.771), 242-246.

Wang, X., Song, J., Li, P., Ryou, J. H., Dupuis, R. D., Summers, C. J. y Wang, Z. L. (2005). Growth of uniformly aligned ZnO nanowire heterojunction arrays on GaN, AIN, and AI0.5Ga0.5N substrates. Journal of the American Chemical Society, 127(21), 7920-7923.

Zarei, M. y Zarei, M. (2018). Self-propelled micro/nanomotors for sensing and environmental remediation. Small, 14.

Zhao, X., Norris, S. J. y Liu, J. (2014). Molecular architecture of the bacterial flagellar motor in cells. Biochemistry, 53(27), 4.323-4.333.

Zi, Y. y Wang, Z. L. (2017). Nanogenerators: an emerging technology towards nanoenergy. APL Materials, 5(7).

Published

2020-01-08

How to Cite

Velasco Lozano, S., & López Gallego, F. (2020). Bio-inorganic electricity generators. Conversion of renewable chemical energy driven by enzyme-functionalized piezoelectric materials. Technology, Science and Education Journal, (15), 125–139. https://doi.org/10.51302/tce.2020.373