Functionalization of anti-fouling surfaces for improvement of titanium properties
DOI:
https://doi.org/10.51302/tce.2018.224Keywords:
polyethylene glycol (PEG), titanium, biofunctionalization, plasma polymerization, electrodeposition, Arg-Gly- Asp (RGD)Abstract
Currently, implant and prosthetic infections are a serious problem, due to the increased use of these prostheses and the presence of bacteria multiresistant to antibiotics. These infections originate, in most cases, from planktonic bacteria. A possible strategy to avoid infections is to develop anti-fouling surfaces that prevent bacterial adhesion. Another strategy focuses on conferring bactericidal properties to the surfaces of the implants with the use of antimicrobial peptides. In both cases, it is necessary to maintain the excellent union to the tissues that titanium presents.
The ideal surface for prostheses would combine anti-fouling, bactericidal and osseointegration properties, achieving an excellent synergic effect on the surfaces of the implants, improving their stability and functionality. To achieve this goal it is necessary to solve a critical point, which is to functionalize the anti-fouling layer with other biomolecules that can improve its properties.
The objective of the present work is to deposit an anti-fouling layer on a metallic biomaterial, which can be further functionalized with other biomolecules. Titanium has been coated with functionalized polyethylene glycol (PEG) to which the Arg-Gly-Asp (RGD) peptide sequence has been attached. The treated titanium surfaces have shown an excellent combination of anti-fouling properties and good cellular response.
Downloads
References
Bürgers, R., Gerlach, T., Hahnel, S., Schwarz, F., Handel, G. y Gosau, M. (2010). In vivo an in vitro biofilm formation on two different titanium implant surfaces. Clinical Oral Implants Research, 31, 156-164.
Cao, X., Pettitt, M. E., Wode, F., Sancet, M.ª P. A., Fu, J., Ji, J., Callow, M. E., Callow, J. A., Rosenhahn, A. y Grunze, M. (2010). Interaction of zoospores of the green alga Ulva with bioinspired micro- and nanostructured surfa-ces prepared by polyelectrolyte layer-by-layer self-assembly. Advanced Functional Materials, 20, 1.984-1.993.
Choi, C., Hwang, I., Cho, Y. L., Han, S. Y., Jo, D. H., Jung, D., Moon, D. W., Kim, E. J., Jeon, C. S., Kim, J. H., Chung, T. D. y Lee, T. G. (2013). Fabrication and characterization of plasma-polymerized poly(ethylene glycol) film with superior biocompatibility. ACS. Applied Materials & Interfaces, 5, 697-702.
Costa, F., Carvalho, I. F., Montelaro, R. C., Gomes, P. y Martins, M. C. (2011). Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomaterialia, 7, 1.431-1.440.
Donlan, R. M. y Costerton, J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbioly Reviews, 4, 167-193.
Francolini, I. (2010). Prevention and control of biofilm-based medical-device-related infections. FEMS. Immunology and Medical Microbiology, 59, 227-238.
Gao, G. y Lange, D. (2011). The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials, 32, 3.899-3.909.
Godoy-Gallardo, M.ª, Mas-Moruno, C., Fernández- Calderón, M.ª C., Pérez-Giraldo, C., Manero, J. M., Albericio, F., Gil, F. J. y Rodríguez, D. (2014). Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bacterial adhesion and biofilm formation. Acta Biomaterialia, 10, 3.522-3.534.
Godoy-Gallardo, M.ª, Mas-Moruno, C., Yu, K., Manero, J. M., Gil, F. J., Kizhakkedathu, J. y Rodríguez, D. (2015). Antibacterial properties of hLf1-11 peptide onto titanium surfaces: a comparison study between silanization and surface initiated polymerization. Biomacromolecules, 16, 483-496.
Grade, S., Heuer, W., Strempel, J. y Stiesch, M. (2011). Structural analysis of in situ biofilm formation on oral titanium implants. Journal of Dental Implants, 1, 7-12.
Hoyos-Nogués, M., Velasco, F., Ginebra, M. P., Manero, J. M., Gil, F. J. y Mas-Moruno, C. (2017). Regenerating bone via multifunctional coatings: the blending of cell integration and bacterial inhibition properties on the surface of biomaterials. ACS. Applied Materials & Interfaces, 9, 21.618-21.630.
Johnston, E. E., Bryers, J. D. y Ratner, B. D. (2005). Plasma deposition and surface characterization of oligoglyme, dioxane, and crown ether nonfouling films. Langmuir, 21, 870-877.
Kane, S. R., Ashby, P. D. y Pruitt, L. A. (2010). Microscale wear behavior and crosslinking of PEG-like coatings for total hip replacements. Journal of Materials Science. Materials in Medicine, 21, 1.037-1.045.
Klinge, B., Hultin, M. y Berglundh, T. (2005). Peri-implantitis. Dental Clinics of North America, 49, 661-676.
Li, Y., Muir, B. W., Easton, C. D., Thomsen, L., Nisbet, D. R. y Forsythe, J. S. (2014). A study of the initial film growth of PEG-like plasma polymer films via XPS and NEXAFS. Applied Surface Science, 288, 288-294.
Mas-Moruno, C., Espanol, M., Montufar, E. B., Mestres, G., Aparicio, C., Gil, F. J. y Ginebra, M. P. (2013). Bioactive ceramic and metallic surfaces for bone engineering. En A. Taubert, J. F. Mano y J. C. Rodríguez-Cabello (Eds.), Biomaterials Surface Science. Weinheim (Alemania): Wiley-VCH Verlag GmbH & Co.
Mas-Moruno, C., Fraioli, R., Albericio, F., Manero, J. M. y Gil, F. J. (2014). Novel peptide-based platform for the dual presentation of biologically active peptide motifs on biomaterials. ACS. Applied Materials & Interfaces, 6, 6.525-6.236.
Michelmore, A., Gross-Kosche, P., Al-Bataineh, S. A., Whittle, J. D. y Short, R. D. (2013). On the effect of monomer chemistry on growth mechanisms of nonfouling PEG-like plasma polymers. Langmuir, 29, 2.595-2.601.
Mouton, C. y Robert, J. C. (1995). Bacteriología bucodental. Barcelona: Masson.
Reddy, K. V. R., Yedery, R. D. y Aranha, C. (2004). Antimicrobial peptides: premises and promises. International Journal of Antimicrobial Agents, 24, 536-547.
Scardino, A. J. y Nys, R. de (2011). Mini review: biomimetic models and bioinspired surfaces for fouling control. Biofouling, 27, 73-86.
Sharawy, M. y Misch, C. E. (1993). Spread of dental infection in the head and neck. En C. E. Misch, Contemporary Implant Dentistry (pp. 355-368). Saint Louis: Mosby.
Shekaran, A. y García, A. J. (2011). Extracellular matrix-mimetic adhesive biomaterials for bone repair. Journal of Biomedical Materials Research A, 96, 261-272.
Subramani, K., Jung, R. E., Molenberg, A. y Hammerle, C. H. (2009). Biofilm on dental implants: a review of the literature. The International Journal of Oral & Maxillofacial Implants, 24, 616-626.
Tanaka, Y., Matin, K., Gyo, M., Okada, A., Tsutsumi, Y., Doi, H., Nomura, N., Tagami, J. y Hanawa, T. (2010). Effects of electrodeposited poly(ethylene glycol) on biofilm adherence to titanium. Journal of Biomedical Materials Research A, 95, 1.105-1.113.
Tonetti, M. S. (1999). Determination of the success and failure of root-form osseointegrated dental implants. Advances in Dental Research, 13,173-180.
Vasilev, K., Cook, J. y Griesser, H. J. (2009). Antibacterial surfaces for biomedical devices. Expert Review of Medical Devices, 6, 553-567.
Winkler, S., Morris, H. F. y Ochi, S. J. (2000). Implant survival to 36 months as related to length and diameter. Annals of Periodontology, 5, 22-31.
Zhang, M., Desai, T. y Ferrari, M. (1998). Proteins and cells on PEG immobilized silicon surfaces. Biomaterials, 19, 953-960.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Judit Buxadera-Palomero, Carlos Mas-Moruno, Daniel Rodríguez Rius, José María Manero Planella
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.