This is an outdated version published on 2024-07-01. Read the most recent version.

The digital gap in science education in Spain during the LOE and LOMCE educational laws

Authors

DOI:

https://doi.org/10.51302/tce.2024.20151

Keywords:

information and communication technologies (ICT), science education, Primary Education, computers, educational reforms, LOE (Organic Law 2/2006, of May 3, on Education), LOMCE (Organic Law 8/2013, of December 9, for the Improvement of Educational Quality), educational technology

Abstract

The last two curricular reforms in Spain, the LOE (Organic Law 2/2006, of May 3, on Education) and the LOMCE (Organic Law 8/2013, of December 9, for the Improvement of Educational Quality), have promoted the integration of information and communication technologies (ICT) in science education. However, the role of these reforms in the pedagogical practice of teachers (men and women) is a little investigated aspect. This study examines to what extent Primary Education teachers (N = 719) have used ICT for science education during these educational laws and what role continuous professional development has played in this. To this end, a secondary analysis of TIMSS 2011 and TIMSS 2015 is carried out, whose data collection took place during the LOE and the LOMCE respectively. The results show that i) there was little availability of computers and digital tablets for students; ii) an extremely scarce use of ICT for science education, without greater frequency during the LOMCE than the LOE; iii) little participation of teachers in continuous professional training courses on ICT; and iv) teachers who did participate in such courses have more frequently integrated ICT into their science classes. These findings are concerning, as they reveal a modest impact of educational reforms on the strategies and didactic resources employed by teachers for science education, which results in a status quo of Spanish science education.

Supporting Agencies

Este estudio de investigación ha sido desarrollado en el marco de un proyecto financiado por la Agencia Estatal de Investigación de España (PID2020-117348RB-I00/AEI/10.13039/501100011033)

Downloads

Download data is not yet available.

Author Biographies

Iraya Yánez-Pérez, PhD Student at the Universidad de Burgos (Spain)

Ingeniera Química por la Universidad de Las Palmas de Gran Canaria (España). Actualmente, está realizando una tesis doctoral en el Departamento de Didácticas Específicas de la Universidad de Burgos. Sus líneas de investigación están relacionadas con el diseño y desarrollo de recursos TIC para la mejora de las actitudes y la motivación científica.

Radu Bogdan Toma, Assistant Professor PhD at the Universidad de Burgos (Spain)

Área de conocimiento de Didáctica de las Ciencias Experimentales. Sus líneas de investigación están relacionadas con el desarrollo de modelos pedagógicos para la mejora de las actitudes y la motivación científica.

Jes´us Ángel Meneses-Villagrá, Professor PhD at the Universidad de Burgos (Spain)

Área de conocimiento de Didáctica de las Ciencias Experimentales. Dirige el Grupo de Investigación Enseñanza y Aprendizaje de las Ciencias de la Universidad de Burgos (GIEC-UBU). Sus líneas de investigación principales son el diseño de metodologías y estrategias didácticas activas en la enseñanza de las ciencias en los distintos niveles de enseñanza.

References

Aljuhani, K., Sonbul, M., Althabiti, M. y Meccawy, M. (2018). Creating a virtual science lab (VSL): the adoption of virtual labs in Saudi schools. Smart Learning Environments, 5(16), 1-13. https://doi.org/10.1186/s40561-018-0067-9

Bhargava, P., Antonakakis, J., Cunningham, C. y Zehnder, A. T. (2006). Web-based virtual torsion laboratory. Computer Applications in Engineering Education, 14(1), 1-8. https://doi.org/10.1002/cae.20061

Cañal de León, P., Criado García-Legaz, A. M.ª, García Carmona, A. y Muñoz, G. (2013). La enseñanza relativa al medio en las aulas españolas de educación infantil y primaria: concepciones didácticas y práctica docente. Investigación en la Escuela, 81, 21-42. https://revistascientificas.us.es/index.php/IE/article/view/6895

Cañal de León, P., Criado García-Legaz, A. M.ª, García Carmona, A. y Muñoz Franco, G. (2016). Concepciones didácticas y práctica docente. En P. Cañal de León, G. Travé González, F. J. Pozuelos Estrada, A. M.ª Criado García-Legaz y A. García Carmona (Eds.), La enseñanza sobre el medio natural y social. Investigaciones y experiencias (pp. 177-205). Díada.

Chaljub Hasbún, J., Peguero García, J. R. y Mendoza Torres, E. J. (2022). Aceptación tecnológica del uso de la realidad aumentada por estudiantes del nivel secundario: una mirada a una clase de Química. Tecnología, Ciencia y Educación, 23, 49-68. https://doi.org/10.51302/tce.2022.864

Cohen, L., Manion, L. y Morrison, K. (2018). Research Methods in Education (8.ª ed.). Routledge.

Darrah, M., Humbert, R., Finstein, J., Simon, M. y Hopkins, J. (2014). Are virtual labs as effective as hands-on labs for undergraduate physics? A comparative study at two major universities. Journal of Science Education and Technology, 23(6), 803-814. https://doi.org/10.1007/s10956-014-9513-9

Knapp, H. (2018). Intermediate Statistics Using SPSS. Sage Publications, Inc.

Kolil, V. K. y Achuthan, K. (2023). Longitudinal study of teacher acceptance of mobile virtual labs. Education and Information Technologies, 28, 7.763-7.796. https://doi.org/10.1007/s10639-022-11499-2

Lee, W. C., Neo, W. L., Chen, D.-T. y Lin, T.-B. (2021). Fostering changes in teacher attitudes toward the use of computer simulations: flexibility, pedagogy, usability and needs. Education and Information Technologies, 26, 4.905-4.923. https://doi.org/10.1007/s10639-021-10506-2

Lee, S. W.-Y. y Tsai, C.-C. (2013). Technology-supported learning in secondary and undergraduate biological education: observations from literature review. Journal of Science Education and Technology, 22(2), 226-233. https://doi.org/10.1007/s10956-012-9388-6

LOE. (2006). Ley orgánica 2/2006, de 3 de mayo, de educación (BOE núm. 106, de 4 de mayo de 2006).

LOMCE. (2013). Ley orgánica 8/2013, de 9 de diciembre, para la mejora de la calidad educativa (BOE núm. 295, de 10 de diciembre de 2013).

LOMLOE. (2020). Ley orgánica 3/2020, de 29 de diciembre, por la que se modifica la Ley orgánica 2/2006, de 3 de mayo, de educación (BOE núm. 340, de 30 de diciembre de 2020).

López Simó, V., Couso Lagarón, D., Simarro Rodríguez, C, Garrido Espeja, A., Grimalt Álvaro, C., Hernández Rodríguez, M.ª I. y Pintó Casulleras, R. (2017). El papel de las TIC en la enseñanza de las ciencias en secundaria desde la perspectiva de la práctica científica. X Congreso Enseñanza de las Ciencias (pp. 691-697). Sevilla.

Martin, M. O. y Mullis, I. V. S. (2012). Methods and Procedures in TIMSS and PIRLS 2011. https://timssandpirls.bc.edu/methods/index.html

Martin, M. O., Mullis, I. V. S. y Hooper, M. (2016). Methods and procedures in TIMSS 2015. https://timssandpirls.bc.edu/publications/timss/2015-methods.html

Moreno Martínez, N. M. y Franco-Mariscal, A. J. (2023). Posibilidades didácticas de la herramienta de realidad aumentada ZapWorks en la enseñanza de las ciencias. Una experiencia con estudiantes de un Máster en Profesorado. Tecnología, Ciencia y Educación, 24, 91-118. https://doi.org/10.51302/tce.2023.2808

Reeves, S. M. y Crippen, K. J. (2021). Virtual laboratories in undergraduate science and engineering courses: a systematic review, 2009-2019. Journal of Science Education and Technology, 30(1), 16-30. https://doi.org/10.1007/s10956-020-09866-0

Romero-Ariza, M., Quesada, A., Abril, A. M.ª, Sorensen, P. y Oliver, M. C. (2019). Highly recommended and poorly used: English and Spanish science teachers' view of inquiry-based learning (IBL) and its enactment. EURASIA Journal of Mathematics, Science and Technology Education, 16(1), 1-16. https://doi.org/10.29333/ejmste/109658

Rutten, N., Joolingen, W. R. van y Veen, J. T. van der (2012). The learning effects of computer simulations in science education. Computers & Education Education, 58(1), 136-153. https://doi.org/10.1016/j.compedu.2011.07.017

Scalise, K., Timms, M., Moorjani, A., Clark, L., Holtermann, K. e Irvin, P. S. (2011). Student learning in science simulations: design features that promote learning gains. Journal of Research in Science Teaching, 48(9), 1.050-1.078. https://doi.org/10.1002/tea.20437

Smetana, L. K. y Bell, R. L. (2012). Computer simulations to support science instruction and learning: a critical review of the literature. International Journal of Science Education, 34(9), 1.337-1.370. https://doi.org/10.1080/09500693.2011.605182

Toma, R. B. (2023). Measuring acceptance of block-based coding environments. Technology, Knowledge and Learning, 28, 241-251. https://doi.org/10.1007/s10758-021-09562-x

Webb, M. E. (2005). Affordances of ICT in science learning: implications for an integrated pedagogy. International Journal of Science Education, 27(6), 705-735. https://doi.org/10.1080/09500690500038520

Yazici, S.Ç. y Nakıboğlu, C. (2023). Examining experienced chemistry teachers' perception and usage of virtual labs in chemistry classes: a qualitative study using the technology acceptance model 3. Education and Information Technologies, 1-34. https://doi.org/10.1007/s10639-023-11985-1

Published

2024-06-14 — Updated on 2024-07-01

Versions

How to Cite

Yánez-Pérez, I., Toma, R. B., & Meneses-Villagrá, J. Ángel. (2024). The digital gap in science education in Spain during the LOE and LOMCE educational laws. Technology, Science and Education Journal. https://doi.org/10.51302/tce.2024.20151 (Original work published June 14, 2024)