Proposal for the teaching of algebraic linear equations

Authors

DOI:

https://doi.org/10.51302/tce.2024.18775

Keywords:

teaching methods and strategies, learning theory and science teaching, algebraic linear equation, history of mathematics, learning, didactic sequence, geometry

Abstract

The teaching and learning of mathematics is a problem that has been present in all educational levels, therefore, secondary education is no exception. In this context, research in educational mathematics has proposed different strategies that aim to improve the teaching-learning process in this area of knowledge; however, up to now it is difficult to say that this problem has been solved, particularly in Mexico. This situation motivates us to continue working in this direction with the purpose of helping more and more teachers (men and women) to learn about didactic resources with which they can teach better mathematics classes for the benefit of their students. This present paper tries to help in this sense by mean a didactic proposal to teach the algebraic linear equation, which has as fundamental components the history of mathematics and geometry.

Downloads

Download data is not yet available.

Author Biographies

Alberto Sánchez Moreno, Centro Interdisciplinario de Investigación y Docencia en Educación Técnica (Santiago de Querétaro, México)

Físico y maestro en Ciencias (Física) por la Universidad Nacional Autónoma de México y Doctor en Ciencias (Física) por Universidad Autónoma Metropolitana (México). Sus áreas de investigación son las soluciones exactas a las ecuaciones de Einstein, los modelos cosmológicos en supergravedad, geometrotermodinámica y la enseñanza de la física y las matemáticas. Ha impartido asignaturas de Física y Matemáticas a nivel medio superior, superior y posgrado. Actualmente, es profesor investigador de tiempo completo en el Centro Interdisciplinario de Investigación y Docencia en Educación Técnica (institución perteneciente al Tecnológico Nacional de México).

Raquel Cárdenas Collazo, Centro Interdisciplinario de Investigación y Docencia en Educación Técnica (Santiago de Querétaro, México)

Maestra en Docencia en Educación Superior por la Universidad Autónoma de Tamaulipas (México) y especialista en Tecnologías de la Información para el Aprendizaje por el Centro Interdisciplinario de Investigación y Docencia en Educación Técnica. Fue jefa de proyectos de docencia, asesora de orientación educativa, coordinadora del Proyecto de Comunicación con Padres de Familia, coordinadora del Programa de Desarrollo Humano Integral y coordinadora de Orientación Educativa del Departamento de Desarrollo Académico del Instituto Tecnológico de Ciudad Madero (México). Actualmente, es profesora de educación superior de tiempo completo, adscrita al área de Ciencias Básicas del Centro Interdisciplinario de Investigación y Docencia en Educación Técnica (institución perteneciente al Tecnológico Nacional de México).

Ana Karen Coronel Ruiz, Universidad Tecnológica del Estado de Querétaro (México)

Ingeniera Industrial por el Instituto Tecnológico de Querétaro (México). Especialista en Aprendizaje y Enseñanza de las Ciencias Básicas por el Centro Interdisciplinario de Investigación y Docencia en Educación Técnica (México). Cuenta con estudios de maestría en Intervención Pedagógica por la Universidad Pedagógica Nacional (México). Entre 2017 y 2022 fue maestra de Matemáticas a nivel de secundaria. Actualmente, es maestra de Matemáticas en la Universidad Tecnológica de Querétaro.

Isaac Hernández Renovato, Centro Interdisciplinario de Investigación y Docencia en Educación Técnica (Santiago de Querétaro, México)

Ingeniero en Comunicaciones y Electrónica por la Escuela Superior de Ingeniería Mecánica y Eléctrica del Instituto Politécnico Nacional (México). Maestro en Docencia en Educación Superior por la Universidad Autónoma de Tamaulipas (México). Maestro en Ciencias en Enseñanza de las Ciencias y especialista en Tecnologías de la Información para el Aprendizaje por el Centro Interdisciplinario de Investigación y Docencia en Educación Técnica (México). Trabajó como ingeniero en sistemas de control del Departamento de Control de Procesos de la Siderúrgica Lázaro Cárdenas «Las Truchas» en Michoacán (México). Actualmente, es profesor de Educación Superior de tiempo completo, adscrito al área de Ciencias Básicas, en el Centro Interdisciplinario de Investigación y Docencia en Educación Técnica (institución perteneciente al Tecnológico Nacional de México).

References

Álvarez-Ríos, Y. (2007). La geometría de las formas de la naturaleza. TecnoLógicas, 18, 103-136.

Angulo-Acunso, K. N., Maldonado-Ibarra, G. E., Ochoa-González, F. A., Santos-Cedeño, F. H. y Reyes-Castillo, W. B. (2017). Softwares matemáticos para el aprendizaje. Polo del Conocimiento (Ed. núm. 14), 2(12), 102-112.

Aranda Plata, A. (1992). Informe sobre el VII Congreso Internacional de Educación Matemática. Quebec. Epsilon. Revista de la Sociedad Andaluza de Educación Matemática «Thales», 24, 111-126.

Araya, V., Alfaro, M. y Andonegui, M. (2007). Constructivismo: orígenes y perspectivas. Laurus, 13(2), 76-92.

Atonal Gutiérrez, T. (2020). La aplicación de taxonomías en los procesos de aprendizaje. Sinergias Educativas, 5(2), 1-15.

Caivano, J. L. (2005). Semiótica, cognición y comunicación visual: los signos básicos que construyen lo visible. Semiótica de lo visual. Tópicos del Seminario, 13, 113-115.

Cedillo Ávalos, T. E. (2006). La enseñanza de las matemáticas en la escuela secundaria. Revista Mexicana de Investigación Educativa, 11(28), 129-153.

Cobb. P., Yackel, E. y McClain, K. (Eds.). (2000). Symbolizing and Communicating in Mathematics Classrooms. Laurence Erlbaum.

Collette, J. P. (2000). Historia de las matemáticas (4.ª ed.). Siglo XXI.

D'Hainaut, L. (1985). Objetivos didácticos y programación. Análisis y construcción de currículums, programas de educación objetivos operativos y situaciones didácticas. Oikos Tau.

Duval, R. (1992). Gráficas y ecuaciones: la articu­lación de dos registros. En R. Cambray, E. Sánchez y G. Zubieta (Eds.), Antología en educación matemática. Sección de Matemática Educativa. Cinvestav-IPN.

Duval, R. (2004). Semiosis y pensamiento humano: registros semióticos y aprendizajes intelectuales. Universidad del Valle.

Duval, R. (2006). Acognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103-131.

Estrada Analco, J. M. (2018). El papiro del Rhind. Revista de Artes y Humanidades, 4(7), 24-33.

Fried, M. N., Menghini, M., Furinghetti, F., Giacardi, L. y Azarello, F. (Eds.). (2009). The first century of the International Commission on Mathematical Instruction (1908-2008): reflecting and shaping the world of mathematics education. ZDM. Mathematics Education, 41(4), 521-524. https://doi.org/10.1007/s11858-009-0186-4

Frola, P. y Velásquez, J. (2016). Cómo elaborar un proyecto de enseñanza. Frovel Educación.

Galán Vioque, G. (Trad.). (2004). Antología palatina II: la guirnalda de Filipo. Editorial Gredos.

Gallardo, A. y Basurto, E. (2010). La negatividad matemática: antesala histórica de los números enteros. Relime, 13(4), 255-268.

García Peña, I. y García Castillo, P. (2020). Materiales didácticos de filosofía helenística. Ediciones Universidad de Salamanca.

García Zacarías, B. E. (2017). Aspectos metodológicos y contextuales presentes en la enseñanza de las matemáticas en educación secundaria (Tesis de licenciatura). Universidad Autónoma de San Luis Potosí, México.

Garrido, S. (2014). Arte geométrico como fundamentos conceptual, proyectual y estético en diseño contemporáneo. Convergencias. Revista de Invesgação e Ensino das Artes, 7(14).

Gascón, J. (2009). El problema de la educación matemática entre la secundaria y la universidad. Educaçao Matemática Pesquisa, 11(2), 273-302.

Giandini, V. H. y Salerno, M. N. (2009). La geometría, los ingresantes y el software Maple. Formación Universitaria, 2(4), 23-30.

González, P. (2004). La historia de las matemáticas como recurso didáctico e instrumento para enriquecer culturalmente su enseñanza. SUMA, 45, 17-28.

González Zacarías, C., Palomino Ovando, M. A. y Cocoletzi, G. H. (2010). Los números de Fibonacci en la naturaleza y los sistemas nanoestructurados artificiales. Mundo Nano, 3(1), 15-28.

Guachún Lucero, P. y Espadero Faicán, G. (2021). El software GeoGebra como recurso para la enseñanza de vectores: una experiencia didáctica. Revista de Matemática, Ensino e Cultura, 16(37), 46-60.

Karplus, R., Pulos, S. y Stage, E.K. (1981). Early adolescents reasoning with unknowns. Proceedings of the Fifth PME Conference, Grenoble, Francia (pp. 147-152).

Leiva, C. (2005). Conductismo, cognitivismo y aprendizaje. Tecnología en Marcha, 18(1), 66-76.

Martin Guillén, Y. y Lezcano Rodríguez, L. E. (2021). El GeoGebra en la clase de matemática de la enseñanza media desde los móviles. Varona, 73.

Miramontes, P. (1996). La geometría de las formas vivas. Ciencias, 42, 12-19.

Morales Peral, L. (2002). Las matemáticas en el antiguo Egipto. Apuntes de Historia de las Matemáticas, 1(1), 5-12.

Moreira, M. A. (2012). ¿Al final, qué es aprendizaje significativo? Revista Qurriculum, 25, 29-56.

Moreira, M. A. (2017). Aprendizaje significativo como un referente para la organización de la enseñanza. Archivos de Ciencias de la Educación, 11(12), 1-16.

Ortega Gallegos, K. A. e Izquierdo Buenrostro, G. N. (2018). Algunos aspectos históricos de las funciones seno y coseno. Mixba'al. Revista Metropolitana de Matemáticas, 9(1), 13-26.

Ortiz Granja, D. (2015). El constructivismo como teoría y método de enseñanza. Sophia, Colección de Filosofía de la Educación, 19, 93-110.

Oviedo, L. M. y Kanashiro, A. M.ª. (2012). Los registros semióticos de representación en matemáticas. Revista Aula Universitaria, 13, 29-36.

Parra Buitrago, E. Y. (2021). ¿Por qué a muchos estudiantes se les dificulta aprender matemáticas, en el nivel secundaria? (Tesis de licenciatura). Universidad Pedagógica Nacional, Bogotá, Colombia.

Pina, C. M. (2014). Los fundamentos de la cristalografía: una reseña histórica. Anales de Química, 110(4), 294-302.

Pozo, J. I. (1999). Aprendices y maestros: la nueva cultura del aprendizaje. Alianza Editorial.

Pozo, J. I. (2008). Aprendices y maestros: la psicología cognitiva del aprendizaje. Alianza Editorial.

Pozo Municio, J. I. y Gómez Crespo, M. Á. (2009). Aprender y enseñar ciencia (6.ª ed.). Ediciones Morata.

Puig, L. (2006). La resolución de problemas en la historia de las matemáticas. En J. V. Aymerich y S. Macario (Eds.), Matemáticas para el siglo XXI (pp. 39-57). Publicacions de la Universitat Jaume I.

Puig, L. (2008). Historias de al-KhwāzmĪ (2.ª entrega): los libros. SUMA, 59, 105-112.

Radford, L. (2006). Introducción semiótica y educación matemática. Relime. Revista Latinoamericana de Investigación en Matemática Educativa, 9(núm. especial), 7-21.

Rodríguez Palmero, M.ª L. (2011). La teoría del aprendizaje significativo: una revisión aplicable a la escuela actual. IN. Revista Electrònica d’Investigació i Innovació Educativa i Socioeducativa, 3(1), 29-50.

Ruiz, A. (2003). Historia y filosofía de las matemáticas. Editorial Universidad Estatal.

Ruiz-Ramírez, R., García-Cué, J. L. y Pérez-Olvera, M.ª A. (2014). Causas y consecuencias de la deserción escolar en el bachillerato: Caso Universidad Autónoma de Sinaloa. Ra Ximhai, 10(5), 51-74.

Sánchez-Balarezo, R. W. y Borja-Andrade, A. M. (2022). Geogebra en el proceso de enseñanza-aprendizaje de las matemáticas. Dominio de las Ciencias, 8(2), 33-52.

Sánchez Moreno, A., Jaimes Gómez, O. y Aguilera Terrats, J. R. (2020). La enseñanza basada en preguntas: la ley de Ampère y el término de Maxwell. Didáctica de las Ciencias Experimentales y Sociales, 38, 115-132. https://doi.org/10.7203/DCES.38.15427

SEP. (2017). Aprendizajes clave para la educación integral: plan y programas de estudio para la educación. https://www.gob.mx/sep/articulos/aprendizajes-clave-para-la-educacion-integral

Steinbring, H. (2005). Do mathematics symbols serve to describe or construct reality? En M. H. G. Hoffmann, J. Lenhard y F. Seeger (Eds.), Activity and Sign: Grounding Mathematics Education (pp. 91-104). Springer.

Trujillo Tovar, S. A. y Martínez Trujillo, O. I. (2010). Acercamiento histórico al trabajo de Diofanto (Tesis de licenciatura). Universidad Surcolombiana, Neiva, Colombia.

Urbano Meneses, R. A. (2010). Geometría en las esculturas del Parque Arqueológico de San Agustín. Revista Latinoamericana de Etnomatemática, 3(1), 45-66.

Velarde, A. (2002). Relatividad y el espacio-tiempo: una introducción para estudiantes de colegio. Revista Brasileira de Ensino de Física, 24(3), 262-277.

Zaragoza, G. N., López, S. R. y Díaz, R. J. (2006). Construyendo modelos didácticos virtuales de sólidos de revolución utilizando SolRev. Ingeniería, 10(3), 53-59.

Zea Saldarriaga, C. A. (2012). La instauración histórica de la noción de vector como concepto matemático (Tesis de maestría). Universidad del Valle, Colombia.

Published

2024-01-04

How to Cite

Sánchez Moreno, A., Cárdenas Collazo, R., Coronel Ruiz, A. K., & Hernández Renovato, I. (2024). Proposal for the teaching of algebraic linear equations. Technology, Science and Education Journal, (27), 187–214. https://doi.org/10.51302/tce.2024.18775

Issue

Section

Projects and Academic contributions