Telecare service activity analysis using Big Data and Data Mining
DOI:
https://doi.org/10.51302/tce.2017.117Keywords:
Big Data, Hadoop, MapReduce, Mahout, Data Mining, telecare, users, callsAbstract
In the current moment that we are living now, the use of Big Data is taken a strength and a very important relevance. The biggest companies of social sector and service sector are using Big Data technologies that allow to store and treat all the information that they have of users and, in a second way, the incorporation of the knowledge of the treatment of this information in the life of the users, in the way of improve the services offered and go to the next step in the relationship of customer/company.
In telecare, with the IP technology in Telecare Unit, the communication between the unit and control centre will be done using internet instead of telephony cable. The companies will start to use these technologies to store all the information that the unit will send to the control center. With all this information, the companies will be able to discover patterns of user’s behavior, detect some illnesses like, for example, alzheimer. The most important action that the companies will be able to have is to have more information related to the situation of all devices and sensors installed in user’s home when the emergency alarm is raised.
Downloads
References
Alex Ott´´´ s Blog: Getting started with examples from «Mahout in Action». Disponible en: http://alexott.blogspot.com.es/2012/07/getting-started-with-examples-from.html [Consultado: abril de 2016].
Apache Hadoop: http://hadoop.apache.org/ [Consultado: abril de 2016].
Chimpler Blog: Using the Mahout Naive Bayes classifier to automatically classify Twitter messages. Disponible en: https://chimpler.wordpress.com/2013/03/13/ using-the-mahout-naive-bayes-classifier-to-automatically-classify-twitter-messages/ [Consultado: abril de 2016].
Cook, S. [2013]: «Mahout item recommender tutorial using Java and Eclipse», YouTube. Disponible en: https://www.youtube.com/watch?v=yD40rVKUwPI [Consultado: abril de 2016].
Data Mining: Tareas del Data Mining. Disponible en: http://datamining-ucm.github.io/docs/tareas.html [Consultado: mayo de 2016].
Fayyad, U.; Piatetsky-Shapiro, G. y Smyth, P. [1996]: Knowledge discovery and data mining: towards a unifying framework. Disponible en: https://www.aaai.org/Papers/KDD/1996/KDD96-014.pdf [Consultado: abril de 2016].
[1997]: From data mining to knowledge discovery in databases. Disponible en: http://www.csd.uwo.ca/faculty/ling/cs435/fayyad.pdf [Consultado: mayo de 2016].
Ficheros de Windows necesarios para ejecutar Hadoop: https://github.com/sardetushar/hadooponwindows/archive/master.zip [Consultado: abril de 2016].
GitHub: CSVToMahout.java. Disponible en: https://github.com/josephmisiti/hadoop-examples/blob/master/mahout/clustering/CSVToMahout.java [Consultado: abril de 2016].
GitHub: Source code for «Mahout in Action» book. Disponible en: https://github.com/tdunning/MiA [Consultado: mayo de 2016].
Grupo Fivasa: Tareas en Data Mining. Disponible en: http://grupofivasa.blogspot.com.es/2009/09/tareas-en-data-mining.html [Consultado: mayo de 2016].
Hadoop on the Road: Interfaz Java (FileSystem). Disponible en: http://hadoopontheroad.blogspot.com.es/2013/02/hdfs-interfaz-java.html [Consultado: abril de 2016].
IBM Developer Works: Introducing Apache Mahout. Disponible en: http://www.ibm.com/developerworks/java/library/j-mahout/ [Consultado: mayo de 2016].
Imserso [2005]:Guía de teleasistencia domiciliaria, España: Ministerio de Sanidad, Servicios Sociales e Igualdad.
Java: http://www.oracle.com/technetwork/java/index.html [Consultado: abril de 2016].
Lara, J. A. [2014]: Integración de bases de datos, Madrid: Centro de Estudios Financieros.
Marín, J. M.: Introducción a Data Mining. Disponible en: http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/DM/introduccion-DM.pdf [Consultado: abril de 2016].
Oliver, A. C. [2014]: «Enjoy machine learning with Mahout on Hadoop», JavaWorld. Disponible en: http://www.javaworld.com/article/2241046/big-data/enjoy-machine-learning-with-mahout-on-hadoop.html [Consultado: mayo de 2016].
Redko, A. [2012]: «Apache Mahout getting started», Java Code Geeks. Disponible en: https://www.javacodegeeks.com/2012/02/apache-mahout-getting-started.html [Consultado: mayo de 2016].
Safe Living (blog): https://safeliving.wordpress.com/ [Consultado: abril de 2016].
Soft Computing and Intelligent Information System: Big Data: algorithms for data preprocessing, computational intelligence, and imbalanced classes. Disponible en: http://sci2s.ugr.es/BigData [Consultado: abril de 2016].
SolidQ: Big Data mining with Mahout. Disponible en: http://summit.solidq.com/big-data-mining-mahout/ [Consultado: mayo de 2016].
The Big Data BlOG: http://thebigdatablog.weebly.com/ [Consultado: abril de 2016].
TooDey: http://toodey.com y http://toodey.com/2015/08/10/hadoop-installation-on-windows-without-cygwin-in-10-mints/ [Consultado: abril de 2016].
Tunstall: http://www.tunstall.com/ [Consultado: abril de 2016].
Universidad Carlos III de Madrid [octubre 2015]: Fundamentals of Big Data Software and Hardware Technologies.
Wikipedia: Bid Data. Disponible en: https://es.wikipedia.org/wiki/Big_data [Consultado: abril de 2016].
Wikipedia: K-means. Disponible en: https://es.wikipedia.org/wiki/K-means [Consultado: mayo de 2016].
White, T. [2015]: Hadoop the definitive guide, EE. UU.: O’Really.
YouTube: Apache Mahout tutorial for beginners. Disponible en: https://www.youtube.com/watch?v=zvfKH9Yb0s0 [Consultado: mayo de 2016].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Alfredo Moreno Muñoz, Juan Alfonso Lara Torralbo
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.