Caracterización del fenómeno de «cola larga» en los portales de boca a boca electrónico

Autores/as

  • María Olmedilla Fernández Assistant professor de la SKEMA Business School (Francia)
  • Sergio Luis Toral Marín Catedrático de universidad de la Escuela Técnica Superior de Ingeniería de la Universidad de Sevilla (España)
  • María del Rocío Martínez-Torres Catedrática de universidad en la Facultad de Ciencias Económicas y Empresariales de la Universidad de Sevilla (España)

DOI:

https://doi.org/10.51302/tce.2019.335

Palabras clave:

boca a boca electrónico (eWOM), contenido generado por el usuario, cola larga, distribución de la ley de potencia, método del codo

Resumen

El comercio online y los sistemas de recomendación tienen un efecto sobre la demanda de distintos tipos de productos. El objetivo del artículo es probar si internet promueve los productos más populares o super-hit, los productos menos populares o nicho, o ambos, así como analizar cuantitativamente la coexistencia de los efectos super-hit y de «cola larga». Analizando la curva de distribución de las acciones realizadas por los consumidores en internet sobre 28 categorías de producto, se proponen dos métodos: el método de ajuste de la ley de potencia de la distribución del número de productos (factor de la oferta) por número de comentarios online (factor de la demanda) y el método del codo demarcado por el ajuste de la ley de potencia para probar matemáticamente la presencia de ambos fenómenos. Los datos se extrajeron con un crawler programado con Python y con la librería de código abierto Scrapy. Los hallazgos revelan que el boca a boca electrónico promueve estos fenómenos según las diferentes categorías de productos, así como su coexistencia. Entre las implicaciones gerenciales destacan las nuevas perspectivas sobre los mercados potenciales que pueden abrirse por la expansión de la cola.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Anderson, C. (2004). The long tail. Wired Magazine, 12 (10), 170-177.

Anderson, C. (2008). Long Tail: Why the Future of Business is Selling Less of More. New York: Hyperion Books.

Barabási, A. L. y Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509-512.

Bimpikis, K. y Markakis, M. G. (2015). Inventory pooling under heavy-tailed demand. Management Science, 62(6), 1.800-1.813.

Brynjolfsson, E., Hu, Y. y Smith, M. (2003). Consumer surplus in the digital economy: estimating the value of increased product variety at online booksellers. Management Science, 49(11), 1.580-1.596.

Brynjolfsson, E., Hu, Y. y Smith, M. (2010). Research commentary-long tails vs. superstars: the effect of information technology on product variety and sales concentration patterns. Information Systems Research, 21(4), 736-747.

Casado-Aranda, L. A., Dimoka, A. y Sánchez-Fernández, J. (2019). Consumer processing of online trust signals: a neuroimaging study. Journal of Interactive Marketing, 47, 150-180.

Chen, Y., Wang, Q. y Xie, J. (2011). Online social interactions: a natural experiment on word of mouth versus observational learning. Journal of marketing research, 48(2), 238-254.

Chevalier, J. y Mayzlin, D. (2006). The effect of word of mouth on sales: online book reviews. Journal of Marketing Research, 43(3), 345-354.

Clauset, A., Shalizi, C. y Newman, M. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661-703.

Crawford, G. C., Aguinis, H., Lichtenstein, B., Davidsson, P. y McKelvey, B. (2015). Power law distributions in entrepreneurship: implications for theory and research. Journal of Business Venturing, 30(5), 696-713.

Dellarocas, C. y Narayan, R. (2007). Tall heads vs. long tails: do consumer reviews increase the informational inequality between hit and niche products? School of Business Research Paper, 06-056.

Elberse, A. (2008). Should you invest in the long tail? Harvard Business Review, 86 (7/8), 88-96.

Elberse, A. y Oberholzer-Gee, F. (2007). Superstars and underdogs: an examination of the long tail phenomenon in video sales. Harvard Business School, 07-015.

Filieri, R., Alguezaui, S. y McLeay, F. (2015). Why do travelers trust TripAdvisor? Antecedents of trust towards consumer-generated media and its influence on recommendation adoption and word of mouth. Tourism Management, 51, 174-185.

Goel, S., Broder, A., Gabrilovich, E. y Pang, B. (2010). Anatomy of the long tail: ordinary people with extraordinary tastes. Proceedings of the Third ACM International Conference on Web Search and Data Mining (pp. 201-210). New York.

Gu, B., Tang, Q. y Whinston, A. (2013). The influence of online word-of-mouth on long tail formation. Decision Support Systems, 56, 474-481.

Hervas-Drane, A. (2009). Word of mouth and taste matching: a theory of the long tail. NET Institute Working Paper, 07-041.

Koçaş, C. y Akkan, C. (2016). A system for pricing the sales distribution from blockbusters to the long tail. Decision Support Systems, 89, 56-65.

Kodinariya, T. y Makwana, P. (2013). Review on determining number of cluster in k-means clustering. International Journal, 1(6), 90-95.

Lee, J., Lee, J. N. y Shin, H. (2011). The long tail or the short tail: the category-specific impact of eWOM on sales distribution. Decision Support Systems, 51(3), 466-479.

Madhulatha, T. (2012). An overview on clustering methods. Journal of Engineering IOSR, 2(4), 719-725.

Mahanti, A., Carlsson, N., Mahanti, A., Arlitt, M. y Williamson, C. (2013). A tale of the tails: power-laws in internet measurements. IEEE Network, 27(1), 59-64.

Manes, E. y Tchetchik, A. (2018). The role of electronic word of mouth in reducing information asymmetry: an empirical investigation of online hotel booking. Journal of Business Research, 85, 185-196.

Martínez-Torres, M. R. (2014). Analysis of open innovation communities from the perspective of social network analysis. Technology Analysis & Strategic Management, 26(4), 435-451.

Maslowska, E., Malthouse, E. C. y Viswanathan, V. (2017). Do customer reviews drive purchase decisions? The moderating roles of review exposure and price. Decision Support Systems, 98, 1-9.

Moe, W. W. y Trusov, M. (2011). The value of social dynamics in online product ratings forums. Journal of Marketing Research, 48(3), 444-456.

Morales-Arroyo, M. y Pandey, T. (2010). Identification of critical eWOM dimensions for music albums. IEEE International Conference on Management of Innovation and Technology (pp. 1.230-1.235). Singapore.

Newman, M. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5), 323-351.

Olmedilla, M.ª, Martínez-Torres, M.ª R. y Toral, S. L. (2015). Examining the power-law distribution among eWOM communities: a characterisation approach of the long tail. Technology Analysis & Strategic Management, 28(5), 601-613.

Olmedilla, M.ª, Martínez-Torres, M.ª R. y Toral, S. L. (2016). Harvesting big data in social science: a methodological approach for collecting online user-generated content. Computer Standards & Interfaces, 46, 79-87.

Park, C. y Lee, T. M. (2009). Information direction, website reputation and eWOM effect: a moderating role of product type. Journal of Business Research, 62(1), 61-67.

Park, D. H., Lee, J. y Han, I. (2007). The effect of on-line consumer reviews on consumer purchasing intention: the moderating role of involvement. International Journal of Electronic Commerce, 11(4), 125-148.

Shao, K. (2012). The effects of controversial reviews on product sales performance: the mediating role of the volume of word of mouth. International Journal of Marketing Studies, 4(4), 32-38.

Standifird, S. (2001). Reputation and ecommerce: eBay auction and the asymmetrical impact of positive and negative ratings. Journal of Management, 27(3), 279-295.

Yeap, J., Ignatius, J. y Ramayah, T. (2014). Determining consumers’ most preferred eWOM platform for movie reviews: a fuzzy analytic hierarchy process approach. Computers in Human Behavior, 31, 250-258.

Zhang, L., Ma, B. y Cartwright, D. K. (2013). The impact of online user reviews on cameras sales. European Journal of Marketing, 47(7), 1.115-1.128.

Zhang, K. Z., Zhao, S. J., Cheung, C. M. y Lee, M. K. (2014). Examining the influence of online reviews on consumers’ decisionmaking: a heuristic-systematic model. Decision Support Systems, 67, 78-89.

Zhou, W. y Duan, W. (2015). An empirical study of how third-party websites influence the feedback mechanism between online word-of-mouth and retail sales. Decision Support Systems, 76, 14-23.

Zhu, F. y Zhang, X. (2010). Impact of online consumer reviews on sales: the moderating role of product and consumer characteristics. Journal of Marketing, 74(2), 133‑148.

Descargas

Publicado

05-09-2019

Cómo citar

Olmedilla Fernández, M., Toral Marín, S. L., & Martínez-Torres, M. del R. (2019). Caracterización del fenómeno de «cola larga» en los portales de boca a boca electrónico. Revista Tecnología, Ciencia Y Educación, (14), 97–125. https://doi.org/10.51302/tce.2019.335